1. Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide
riboside is uniquely and orally bioavailable in mice and humans. Nat
Commun. 2016;7:12948. (PubMed)
2. Nikiforov A,
Kulikova V, Ziegler M. The human NAD metabolome: functions, metabolism
and compartmentalization. Crit Rev Biochem Mol Biol. 2015;50(4):284-297.
(PubMed)
3. Kawai S, Murata K.
Structure and function of NAD kinase and NADP phosphatase: key enzymes
that regulate the intracellular balance of NAD(H) and NADP(H). Biosci
Biotechnol Biochem. 2008;72(4):919-930. (PubMed)
4. Agledal L, Niere M, Ziegler M. The phosphate makes a difference: cellular functions of NADP. Redox Rep. 2010;15(1):2-10. (PubMed)
5. Penberthy WT, Kirkland JB. Niacin. In: Erdman JW, MacDonald I, Zeisel SH, eds. Present Knowledge in Nutrition. 10th ed. Ames: International Life Sciences Institute; 2012:293-306.
6. Kirkland JB.
Niacin. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR,
eds. Modern Nutrition in Health and Disease. 11th ed. Baltimore: Lippincott Williams & Wilkins; 2014:331-340.
7. Hottiger MO, Hassa
PO, Luscher B, Schuler H, Koch-Nolte F. Toward a unified nomenclature
for mammalian ADP-ribosyltransferases. Trends Biochem Sci.
2010;35(4):208-219. (PubMed)
8. Liu C, Yu X. ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci. 2015;16(6):491-501. (PubMed)
9. Hwang ES, Song SB.
Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator
in cells. Cell Mol Life Sci. 2017;74(18):3347-3362. (PubMed)
10. Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133-171. (PubMed)
11. Fliegert R,
Bauche A, Wolf Perez AM, et al. 2'-Deoxyadenosine 5'-diphosphoribose is
an endogenous TRPM2 superagonist. Nat Chem Biol. 2017;13(9):1036-1044. (PubMed)
12.
Mutafova-Yambolieva VN, Hwang SJ, Hao X, et al. Beta-nicotinamide
adenine dinucleotide is an inhibitory neurotransmitter in visceral
smooth muscle. Proc Natl Acad Sci U S A. 2007;104(41):16359-16364. (PubMed)
13. Moreschi I,
Bruzzone S, Nicholas RA, et al. Extracellular NAD+ is an agonist of the
human P2Y11 purinergic receptor in human granulocytes. J Biol Chem.
2006;281(42):31419-31429. (PubMed)
14. Klein C,
Grahnert A, Abdelrahman A, Muller CE, Hauschildt S. Extracellular NAD(+)
induces a rise in [Ca(2+)](i) in activated human monocytes via
engagement of P2Y(1) and P2Y(11) receptors. Cell Calcium.
2009;46(4):263-272. (PubMed)
15. Moreschi I,
Bruzzone S, Bodrato N, et al. NAADP+ is an agonist of the human P2Y11
purinergic receptor. Cell Calcium. 2008;43(4):344-355. (PubMed)
16. Huang C, Hu J,
Subedi KP, et al. Extracellular adenosine diphosphate ribose mobilizes
intracellular Ca2+ via purinergic-dependent Ca2+ pathways in rat
pulmonary artery smooth muscle cells. Cell Physiol Biochem.
2015;37(5):2043-2059. (PubMed)
17. Knopp RH. Drug treatment of lipid disorders. N Engl J Med. 1999;341(7):498-511. (PubMed)
18. Graff EC, Fang
H, Wanders D, Judd RL. Anti-inflammatory effects of the
hydroxycarboxylic acid receptor 2. Metabolism. 2016;65(2):102-113. (PubMed)
19. Jin FY, Kamanna
VS, Kashyap ML. Niacin accelerates intracellular ApoB degradation by
inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2)
cells. Arterioscler Thromb Vasc Biol. 1999;19(4):1051-1059. (PubMed)
20. Kamanna VS, Ganji SH, Kashyap ML. Recent advances in niacin and lipid metabolism. Curr Opin Lipidol. 2013;24(3):239-245. (PubMed)
21. Carlson LA.
Studies on the effect of nicotinic acid on catecholamine stimulated
lipolysis in adipose tissue in vitro. Acta Med Scand. 1963;173:719-722. (PubMed)
22. Lauring B,
Taggart AK, Tata JR, et al. Niacin lipid efficacy is independent of both
the niacin receptor GPR109A and free fatty acid suppression. Sci Transl
Med. 2012;4(148):148ra115. (PubMed)
23. Brody T. Nutritional Biochemistry. 2nd ed. San Diego: Academic Press; 1999.
24. Kirkland JB. Niacin. In: Zempleni J, Suttie JW, Gregory III JF, Stover PJ, eds. Handbook of Vitamins. 5th ed. Boca Raton: CRC Press; 2013:149-190.
25. Gregory JF, 3rd. Nutritional properties and significance of vitamin glycosides. Annu Rev Nutr. 1998;18:277-296. (PubMed)
26. Dawson B,
Favaloro EJ, Taylor J, Aggarwal A. Unrecognized pellagra masquerading as
odynophagia. Intern Med J. 2006;36(7):472-474. (PubMed)
27. Jagielska G,
Tomaszewicz-Libudzic EC, Brzozowska A. Pellagra: a rare complication of
anorexia nervosa. Eur Child Adolesc Psychiatry. 2007;16(7):417-420. (PubMed)
28. Kertesz SG. Pellagra in 2 homeless men. Mayo Clin Proc. 2001;76(3):315-318. (PubMed)
29. Prakash R,
Gandotra S, Singh LK, Das B, Lakra A. Rapid resolution of delusional
parasitosis in pellagra with niacin augmentation therapy. Gen Hosp
Psychiatry. 2008;30(6):581-584. (PubMed)
30. Badawy AA. Pellagra and alcoholism: a biochemical perspective. Alcohol Alcohol. 2014;49(3):238-250. (PubMed)
31. Majewski M,
Kozlowska A, Thoene M, Lepiarczyk E, Grzegorzewski WJ. Overview of the
role of vitamins and minerals on the kynurenine pathway in health and
disease. J Physiol Pharmacol. 2016;67(1):3-19. (PubMed)
32. Rosmaninho A,
Sanches M, Fernandes IC, et al. Letter: Pellagra as the initial
presentation of Crohn disease. Dermatol Online J. 2012;18(4):12. (PubMed)
33. Zaraa I,
Belghith I, El Euch D, et al. A case of pellagra associated with
megaduodenum in a young woman. Nutr Clin Pract. 2013;28(2):218-222. (PubMed)
34. Bilgili SG, Karadag AS, Calka O, Altun F. Isoniazid-induced pellagra. Cutan Ocul Toxicol. 2011;30(4):317-319. (PubMed)
35. Natural Medicines. Professional Monograph - Niacin/Interactions with drugs. Available at: https://naturalmedicines.therapeuticresearch.com/. Accessed 8/2/17.
36. Dreizen S,
McCredie KB, Keating MJ, Andersson BS. Nutritional deficiencies in
patients receiving cancer chemotherapy. Postgrad Med.
1990;87(1):163-167, 170. (PubMed)
37. Nogueira A,
Duarte AF, Magina S, Azevedo F. Pellagra associated with esophageal
carcinoma and alcoholism. Dermatol Online J. 2009;15(5):8. (PubMed)
38. Oldham MA,
Ivkovic A. Pellagrous encephalopathy presenting as alcohol withdrawal
delirium: a case series and literature review. Addict Sci Clin Pract.
2012;7(1):12. (PubMed)
39. World Health
Organization, United Nations High Commissions for Refugees. Pellagra and
its prevention and control in major emergencies. World Health
Organization. 2000. Available at: http://www.who.int/nutrition/publications/emergencies/WHO_NHD_00.10/en/. Accessed 6/20/13.
40. Murray MF.
Tryptophan depletion and HIV infection: a metabolic link to
pathogenesis. Lancet Infect Dis. 2003;3(10):644-652. (PubMed)
41. Food and
Nutrition Board, Institute of Medicine. Niacin. Dietary Reference
Intakes: Thiamin, Riboflavin, Niacin, Vitamin B-6, Vitamin B-12,
Pantothenic Acid, Biotin, and Choline. Washington, D.C.: The National
Academies Press; 1998:123-149. (The National Academies Press)
42. Negrini S,
Gorgoulis VG, Halazonetis TD. Genomic instability--an evolving hallmark
of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220-228. (PubMed)
43. Kirkland JB. Niacin requirements for genomic stability. Mutat Res. 2012;733(1-2):14-20. (PubMed)
44. Burkle A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 2005;272(18):4576-4589. (PubMed)
45. Jacobson EL,
Shieh WM, Huang AC. Mapping the role of NAD metabolism in prevention and
treatment of carcinogenesis. Mol Cell Biochem. 1999;193(1-2):69-74. (PubMed)
46. Spronck JC,
Nickerson JL, Kirkland JB. Niacin deficiency alters p53 expression and
impairs etoposide-induced cell cycle arrest and apoptosis in rat bone
marrow cells. Nutr Cancer. 2007;57(1):88-99. (PubMed)
47. Spronck JC,
Kirkland JB. Niacin deficiency increases spontaneous and
etoposide-induced chromosomal instability in rat bone marrow cells in
vivo. Mutat Res. 2002;508(1-2):83-97. (PubMed)
48. Kostecki LM,
Thomas M, Linford G, et al. Niacin deficiency delays DNA excision repair
and increases spontaneous and nitrosourea-induced chromosomal
instability in rat bone marrow. Mutat Res. 2007;625(1-2):50-61. (PubMed)
49. Dantzer F,
Santoro R. The expanding role of PARPs in the establishment and
maintenance of heterochromatin. FEBS J. 2013;280(15):3508-3518. (PubMed)
50. El Ramy R,
Magroun N, Messadecq N, et al. Functional interplay between Parp-1 and
SirT1 in genome integrity and chromatin-based processes. Cell Mol Life
Sci. 2009;66(19):3219-3234. (PubMed)
51. Boyonoski AC,
Spronck JC, Gallacher LM, et al. Niacin deficiency decreases bone marrow
poly(ADP-ribose) and the latency of ethylnitrosourea-induced
carcinogenesis in rats. J Nutr. 2002;132(1):108-114. (PubMed)
52. Boyonoski AC,
Spronck JC, Jacobs RM, Shah GM, Poirier GG, Kirkland JB. Pharmacological
intakes of niacin increase bone marrow poly(ADP-ribose) and the latency
of ethylnitrosourea-induced carcinogenesis in rats. J Nutr.
2002;132(1):115-120. (PubMed)
53. Weitberg AB.
Effect of nicotinic acid supplementation in vivo on oxygen
radical-induced genetic damage in human lymphocytes. Mutat Res.
1989;216(4):197-201. (PubMed)
54. Hageman GJ,
Stierum RH, van Herwijnen MH, van der Veer MS, Kleinjans JC. Nicotinic
acid supplementation: effects on niacin status, cytogenetic damage, and
poly(ADP-ribosylation) in lymphocytes of smokers. Nutr Cancer.
1998;32(2):113-120. (PubMed)
55. Yong LC,
Petersen MR. High dietary niacin intake is associated with decreased
chromosome translocation frequency in airline pilots. Br J Nutr.
2011;105(4):496-505. (PubMed)
56. Weidele K,
Beneke S, Burkle A. The NAD+ precursor nicotinic acid improves genomic
integrity in human peripheral blood mononuclear cells after
X-irradiation. DNA Repair (Amst). 2017;52:12-23. (PubMed)
57. Jacobson EL. Niacin deficiency and cancer in women. J Am Coll Nutr. 1993;12(4):412-416. (PubMed)
58. Negri E,
Franceschi S, Bosetti C, et al. Selected micronutrients and oral and
pharyngeal cancer. Int J Cancer. 2000;86(1):122-127. (PubMed)
59. Franceschi S,
Bidoli E, Negri E, et al. Role of macronutrients, vitamins and minerals
in the aetiology of squamous-cell carcinoma of the oesophagus. Int J
Cancer. 2000;86(5):626-631. (PubMed)
60. Gensler HL,
Williams T, Huang AC, Jacobson EL. Oral niacin prevents
photocarcinogenesis and photoimmunosuppression in mice. Nutr Cancer.
1999;34(1):36-41. (PubMed)
61. Jacobson EL,
Kim H, Kim M, et al. A topical lipophilic niacin derivative increases
NAD, epidermal differentiation and barrier function in photodamaged
skin. Exp Dermatol. 2007;16(6):490-499. (PubMed)
62. Bermudez Y,
Benavente CA, Meyer RG, Coyle WR, Jacobson MK, Jacobson EL. Nicotinic
acid receptor abnormalities in human skin cancer: implications for a
role in epidermal differentiation. PLoS One. 2011;6(5):e20487. (PubMed)
63. Benavente CA,
Jacobson EL. Niacin restriction upregulates NADPH oxidase and reactive
oxygen species (ROS) in human keratinocytes. Free Radic Biol Med.
2008;44(4):527-537. (PubMed)
64. Benavente CA,
Schnell SA, Jacobson EL. Effects of niacin restriction on sirtuin and
PARP responses to photodamage in human skin. PLoS One. 2012;7(7):e42276.
(PubMed)
65. Park SM, Li T,
Wu S, et al. Niacin intake and risk of skin cancer in US women and men.
Int J Cancer. 2017;140(9):2023-2031. (PubMed)
66. Chen AC, Martin
AJ, Choy B, et al. A phase 3 randomized trial of nicotinamide for
skin-cancer chemoprevention. N Engl J Med. 2015;373(17):1618-1626. (PubMed)
67. Minocha R,
Damian DL, Halliday GM. Melanoma and nonmelanoma skin cancer
chemoprevention: A role for nicotinamide? Photodermatol Photoimmunol
Photomed. 2018;34(1):5-12. (PubMed)
68. Orban T,
Sosenko JM, Cuthbertson D, et al. Pancreatic islet autoantibodies as
predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1.
Diabetes Care. 2009;32(12):2269-2274. (PubMed)
69. Szkudelski T.
Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics
of the experimental model. Exp Biol Med (Maywood). 2012;237(5):481-490.
(PubMed)
70. Lampeter EF,
Klinghammer A, Scherbaum WA, et al. The Deutsche Nicotinamide
Intervention Study: an attempt to prevent type 1 diabetes. DENIS Group.
Diabetes. 1998;47(6):980-984. (PubMed)
71. Gale EA,
Bingley PJ, Emmett CL, Collier T, European Nicotinamide Diabetes
Intervention Trial Group. European Nicotinamide Diabetes Intervention
Trial (ENDIT): a randomised controlled trial of intervention before the
onset of type 1 diabetes. Lancet. 2004;363(9413):925-931. (PubMed)
72. Hedman M,
Ludvigsson J, Faresjo MK. Nicotinamide reduces high secretion of
IFN-gamma in high-risk relatives even though it does not prevent type 1
diabetes. J Interferon Cytokine Res. 2006;26(4):207-213. (PubMed)
73. Fernandez IC,
Del Carmen Camberos M, Passicot GA, Martucci LC, Cresto JC. Children at
risk of diabetes type 1. Treatment with acetyl-L-carnitine plus
nicotinamide - Case reports. J Pediatr Endocrinol Metab.
2013;26(3-4):347-355. (PubMed)
74. Patel AB, Prabhu AS. Hartnup disease. Indian J Dermatol. 2008;53(1):31-32. (PubMed)
75. Oakley A, Wallace J. Hartnup disease presenting in an adult. Clin Exp Dermatol. 1994;19(5):407-408. (PubMed)
76. Shi H, Enriquez
A, Rapadas M, et al. NAD deficiency, congenital malformations, and
niacin supplementation. N Engl J Med. 2017;377(6):544-552. (PubMed)
77. Vander Heiden
MG. Metabolism and congenital malformations - NAD's effects on
development. N Engl J Med. 2017;377(6):509-511. (PubMed)
78. Hu L, Ibrahim
K, Stucki M, et al. Secondary NAD+ deficiency in the inherited defect of
glutamine synthetase. J Inherit Metab Dis. 2015;38(6):1075-1083. (PubMed)
79. Ames BN,
Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant
enzymes with decreased coenzyme binding affinity (increased K(m)):
relevance to genetic disease and polymorphisms. Am J Clin Nutr.
2002;75(4):616-658. (PubMed)
80. Bays HE, Shah
A, Lin J, Sisk CM, Dong Q, Maccubbin D. Consistency of extended-release
niacin/laropiprant effects on Lp(a), ApoB, non-HDL-C, Apo A1, and
ApoB/ApoA1 ratio across patient subgroups. Am J Cardiovasc Drugs.
2012;12(3):197-206. (PubMed)
81. Wink J,
Giacoppe G, King J. Effect of very-low-dose niacin on high-density
lipoprotein in patients undergoing long-term statin therapy. Am Heart J.
2002;143(3):514-518. (PubMed)
82. Taylor AJ,
Sullenberger LE, Lee HJ, Lee JK, Grace KA. Arterial Biology for the
Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER)
2: a double-blind, placebo-controlled study of extended-release niacin
on atherosclerosis progression in secondary prevention patients treated
with statins. Circulation. 2004;110(23):3512-3517. (PubMed)
83. Taylor AJ, Zhu
D, Sullenberger LE, Lee HJ, Lee JK, Grace KA. Relationship between
glycemic status and progression of carotid intima-media thickness during
treatment with combined statin and extended-release niacin in ARBITER
2. Vasc Health Risk Manag. 2007;3(1):159-164. (PubMed)
84. Villines TC,
Stanek EJ, Devine PJ, et al. The ARBITER 6-HALTS Trial (Arterial Biology
for the Investigation of the Treatment Effects of Reducing Cholesterol
6-HDL and LDL Treatment Strategies in Atherosclerosis): final results
and the impact of medication adherence, dose, and treatment duration. J
Am Coll Cardiol. 2010;55(24):2721-2726. (PubMed)
85. Ras RT,
Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and
cardiovascular risk prediction: a systematic review with meta-analysis.
Int J Cardiol. 2013;168(1):344-351. (PubMed)
86. Sahebkar A.
Effect of niacin on endothelial function: a systematic review and
meta-analysis of randomized controlled trials. Vasc Med.
2014;19(1):54-66. (PubMed)
87. Canner PL,
Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug
Project patients: long-term benefit with niacin. J Am Coll Cardiol.
1986;8(6):1245-1255. (PubMed)
88. Brown BG, Zhao
XQ, Chait A, et al. Simvastatin and niacin, antioxidant vitamins, or the
combination for the prevention of coronary disease. N Engl J Med.
2001;345(22):1583-1592. (PubMed)
89. Vittone F,
Chait A, Morse JS, Fish B, Brown BG, Zhao XQ. Niacin plus simvastatin
reduces coronary stenosis progression among patients with metabolic
syndrome despite a modest increase in insulin resistance: a subgroup
analysis of the HDL-Atherosclerosis Treatment Study (HATS). J Clin
Lipidol. 2007;1(3):203-210. (PubMed)
90. Zhao XQ, Morse
JS, Dowdy AA, et al. Safety and tolerability of simvastatin plus niacin
in patients with coronary artery disease and low high-density
lipoprotein cholesterol (The HDL Atherosclerosis Treatment Study). Am J
Cardiol. 2004;93(3):307-312. (PubMed)
91. Sazonov V,
Maccubbin D, Sisk CM, Canner PL. Effects of niacin on the incidence of
new onset diabetes and cardiovascular events in patients with
normoglycaemia and impaired fasting glucose. Int J Clin Pract.
2013;67(4):297-302. (PubMed)
92. Boden WE,
Probstfield JL, Anderson T, et al. Niacin in patients with low HDL
cholesterol levels receiving intensive statin therapy. N Engl J Med.
2011;365(24):2255-2267. (PubMed)
93. Michos ED,
Sibley CT, Baer JT, Blaha MJ, Blumenthal RS. Niacin and statin
combination therapy for atherosclerosis regression and prevention of
cardiovascular disease events: reconciling the AIM-HIGH
(Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High
Triglycerides: Impact on Global Health Outcomes) trial with previous
surrogate endpoint trials. J Am Coll Cardiol. 2012;59(23):2058-2064. (PubMed)
94. Kalil RS, Wang
JH, de Boer IH, et al. Effect of extended-release niacin on
cardiovascular events and kidney function in chronic kidney disease: a
post hoc analysis of the AIM-HIGH trial. Kidney Int.
2015;87(6):1250-1257. (PubMed)
95. Landray MJ,
Haynes R, Hopewell JC, et al. Effects of extended-release niacin with
laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203-212. (PubMed)
96. Schandelmaier
S, Briel M, Saccilotto R, et al. Niacin for primary and secondary
prevention of cardiovascular events. Cochrane Database Syst Rev.
2017;6:Cd009744. (PubMed)
97. Stone NJ,
Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the
treatment of blood cholesterol to reduce atherosclerotic cardiovascular
risk in adults: a report of the American College of Cardiology/American
Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol.
2014;63(25 Pt B):2889-2934. (PubMed)
98. Jackevicius CA,
Tu JV, Ko DT, de Leon N, Krumholz HM. Use of niacin in the United
States and Canada. JAMA Intern Med. 2013;173(14):1379-1381. (PubMed)
99. Burk K. Friedreich ataxia: current status and future prospects. Cerebellum Ataxias. 2017;4:4. (PubMed)
100. Chan PK,
Torres R, Yandim C, et al. Heterochromatinization induced by GAA-repeat
hyperexpansion in Friedreich's ataxia can be reduced upon HDAC
inhibition by vitamin B3. Hum Mol Genet. 2013;22(13):2662-2675. (PubMed)
101. Libri V,
Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects
and safety of high-dose nicotinamide in patients with Friedreich's
ataxia: an exploratory, open-label, dose-escalation study. Lancet.
2014;384(9942):504-513. (PubMed)
102. Lynch DR, Fischbeck KH. Nicotinamide in Friedreich's ataxia: useful or not? Lancet. 2014;384(9942):474-475. (PubMed)
103. Taylor EW. The oxidative stress-induced niacin sink (OSINS) model for HIV pathogenesis. Toxicology. 2010;278(1):124-130. (PubMed)
104. Favre D,
Mold J, Hunt PW, et al. Tryptophan catabolism by indoleamine
2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in
HIV disease. Sci Transl Med. 2010;2(32):32ra36. (PubMed)
105. Jenabian MA,
Patel M, Kema I, et al. Distinct tryptophan catabolism and Th17/Treg
balance in HIV progressors and elite controllers. PLoS One.
2013;8(10):e78146. (PubMed)
106. Chen J, Shao
J, Cai R, et al. Anti-retroviral therapy decreases but does not
normalize indoleamine 2,3-dioxygenase activity in HIV-infected patients.
PLoS One. 2014;9(7):e100446. (PubMed)
107. Dunham RM,
Gordon SN, Vaccari M, et al. Preclinical evaluation of HIV eradication
strategies in the simian immunodeficiency virus-infected rhesus macaque:
a pilot study testing inhibition of indoleamine 2,3-dioxygenase. AIDS
Res Hum Retroviruses. 2013;29(2):207-214. (PubMed)
108. Souza SA,
Chow DC, Walsh EJ, Ford S, 3rd, Shikuma C. Pilot study on the safety and
tolerability of extended release niacin for HIV-infected patients with
hypertriglyceridemia. Hawaii Med J. 2010;69(5):122-125. (PubMed)
109. Dube MP,
Lipshultz SE, Fichtenbaum CJ, et al. Effects of HIV infection and
antiretroviral therapy on the heart and vasculature. Circulation.
2008;118(2):e36-40. (PubMed)
110. Carr A,
Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy,
hyperlipidaemia and insulin resistance in patients receiving HIV
protease inhibitors. AIDS. 1998;12(7):F51-58. (PubMed)
111. Giannarelli
C, Klein RS, Badimon JJ. Cardiovascular implications of HIV-induced
dyslipidemia. Atherosclerosis. 2011;219(2):384-389. (PubMed)
112. Chow DC,
Stein JH, Seto TB, et al. Short-term effects of extended-release niacin
on endothelial function in HIV-infected patients on stable
antiretroviral therapy. AIDS. 2010;24(7):1019-1023. (PubMed)
113.
Balasubramanyam A, Coraza I, Smith EO, et al. Combination of niacin and
fenofibrate with lifestyle changes improves dyslipidemia and
hypoadiponectinemia in HIV patients on antiretroviral therapy: results
of "heart positive," a randomized, controlled trial. J Clin Endocrinol
Metab. 2011;96(7):2236-2247. (PubMed)
114. Dube MP,
Komarow L, Fichtenbaum CJ, et al. Extended-release niacin versus
fenofibrate in HIV-infected participants with low high-density
lipoprotein cholesterol: effects on endothelial function, lipoproteins,
and inflammation. Clin Infect Dis. 2015;61(5):840-849. (PubMed)
115. Hoffer LJ. Vitamin therapy in schizophrenia. Isr J Psychiatry Relat Sci. 2008;45(1):3-10. (PubMed)
116. Pauling L.
Orthomolecular psychiatry. Varying the concentrations of substances
normally present in the human body may control mental disease. Science.
1968;160(3825):265-271. (PubMed)
117. Seybolt SE.
Is it time to reassess alpha lipoic acid and niacinamide therapy in
schizophrenia? Med Hypotheses. 2010;75(6):572-575. (PubMed)
118. Zell M,
Grundmann O. An orthomolecular approach to the prevention and treatment
of psychiatric disorders. Adv Mind Body Med. 2012;26(2):14-28. (PubMed)
119. Yao JK,
Dougherty GG, Jr., Gautier CH, et al. Prevalence and specificity of the
abnormal niacin response: a potential endophenotype marker in
schizophrenia. Schizophr Bull. 2016;42(2):369-376. (PubMed)
120. Sun L, Yang
X, Jiang J, et al. Identification of the niacin-blunted subgroup of
schizophrenia patients from mood disorders and healthy individuals in
Chinese population. Schizophr Bull. 2017; doi: 10.1093/schbul/sbx150.
[Epub ahead of print]. (PubMed)
121. Messamore E.
Niacin subsensitivity is associated with functional impairment in
schizophrenia. Schizophr Res. 2012;137(1-3):180-184. (PubMed)
122. Horrobin DF.
The membrane phospholipid hypothesis as a biochemical basis for the
neurodevelopmental concept of schizophrenia. Schizophr Res.
1998;30(3):193-208. (PubMed)
123. Messamore E.
The niacin response biomarker as a schizophrenia endophenotype: A
status update. Prostaglandins Leukot Essent Fatty Acids. 2017; pii:
S0952-3278(16)30249-6. doi: 10.1016/j.plefa.2017.06.014. [Epub ahead of
print]. (PubMed)
124. Jacob R, Swenseid M. Niacin. In: Ziegler E, Filer L, eds. Present Knowledge in Nutrition. 7th ed. Washington D.C.: ILSI Press; 1996:185-190.
125. US Department of Agriculture. USDA National Nutrient Database for Standard Reference, Release 25. 2012. Available at: https://ndb.nal.usda.gov/ndb/. Accessed 7/30/17.
126. Hendler SS, Rorvik DR. PDR for Nutritional Supplements. 2nd ed. Montvale: Thomson Reuters; 2008.
127. Minto C,
Vecchio MG, Lamprecht M, Gregori D. Definition of a tolerable upper
intake level of niacin: a systematic review and meta-analysis of the
dose-dependent effects of nicotinamide and nicotinic acid
supplementation. Nutr Rev. 2017;75(6):471-490. (PubMed)
128. MacKay D,
Hathcock J, Guarneri E. Niacin: chemical forms, bioavailability, and
health effects. Nutr Rev. 2012;70(6):357-366. (PubMed)
129. Dellinger
RW, Santos SR, Morris M, et al. Repeat dose NRPT (nicotinamide riboside
and pterostilbene) increases NAD(+) levels in humans safely and
sustainably: a randomized, double-blind, placebo-controlled study. NPJ
Aging Mech Dis. 2017;3:17. (PubMed)
130. Fulgoni VL,
3rd, Keast DR, Bailey RL, Dwyer J. Foods, fortificants, and supplements:
Where do Americans get their nutrients? J Nutr. 2011;141(10):1847-1854.
(PubMed)
131. Kar S,
Chockalingam A. Statin-associated rhabdomyolysis with acute renal
failure complicated by intradialytic NSTEMI: a review of lipid
management considerations. Am J Ther. 2013;20(1):57-60. (PubMed)
132. Cziraky MJ,
Willey VJ, McKenney JM, et al. Risk of hospitalized rhabdomyolysis
associated with lipid-lowering drugs in a real-world clinical setting. J
Clin Lipidol. 2013;7(2):102-108. (PubMed)
133. Maccubbin
DL, Chen F, Anderson JW, et al. Effectiveness and safety of laropiprant
on niacin-induced flushing. Am J Cardiol. 2012;110(6):817-822. (PubMed)
134. Hps Thrive
Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in
25 673 high-risk patients of ER niacin/laropiprant: trial design,
pre-specified muscle and liver outcomes, and reasons for stopping study
treatment. Eur Heart J. 2013;34(17):1279-1291. (PubMed)
135. Lewey J,
Shrank WH, Bowry AD, Kilabuk E, Brennan TA, Choudhry NK. Gender and
racial disparities in adherence to statin therapy: a meta-analysis. Am
Heart J. 2013;165(5):665-678, 678 e661. (PubMed)
136. Cheung MC,
Zhao XQ, Chait A, Albers JJ, Brown BG. Antioxidant supplements block the
response of HDL to simvastatin-niacin therapy in patients with coronary
artery disease and low HDL. Arterioscler Thromb Vasc Biol.
2001;21(8):1320-1326. (PubMed)
137. Brown BG,
Cheung MC, Lee AC, Zhao XQ, Chait A. Antioxidant vitamins and lipid
therapy: end of a long romance? Arterioscler Thromb Vasc Biol.
2002;22(10):1535-1546. (PubMed)
138. Rios-Avila
L, Coats B, Chi YY, et al. Metabolite profile analysis reveals
association of vitamin B-6 with metabolites related to one-carbon
metabolism and tryptophan catabolism but not with biomarkers of
inflammation in oral contraceptive users and reveals the effects of oral
contraceptives on these processes. J Nutr. 2015;145(1):87-95. (PubMed)
139. Dollerup OL,
Christensen B,Svart M, et al. A randomized placebo-controlled clinical
trial of nicotinamide riboside in obese men: safety,
insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr.
2018;108:343-353. (PubMed)